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We treat the problem of slow flow through a periodic array of spheres. Our interest is 
in the drag force exerted on the array, and hence the permeability of such arrays. It 
is shown to be convenient to formulate the problem as a set of two-dimensional integral 
equations for the unknown surface stress vector, thus lowering the dimension of the 
problem. This set is solved numerically to obtain the drag as a function of particle 
concentration and packing characteristics. Results are given over the full concentration 
range for simple cubic, body-centred cubic and face-centred cubic arrays and these 
agree well with previous limited experimental, asymptotic and numerical results. 

1. Introduction 
The problem of slow flow through assemblages of fixed solid particles is important 

in many processes involving flow through porous media and packed bed reactors. 
In  spite of its wide importance, solutions are generally limited to conditions of small 
particle concentration. The problem is thus one of both fundamental interest and of 
great practical utility. 

We develop here a solution to the problem for the case in which the particles are 
spheres held fixed in regular periodic arrays. No restriction is made regarding the 
volume concentration of spheres in the lattice, but only certain types of isotropic 
packings may be treated practically from a computational point of view. 

There are a number of methods by which this problem can be solved. Hasimoto 
(1959) obtained a perturbation solution that gave the drag on each sphere in terms 
of an expansion in fractional powers of the concentration of the packing. Hasimoto 
has given the first few terms and, while it is in principle possible to compute more 
terms of the expansion, the existing results are limited to dilute packings. 

The problem can also be solved by finding numerical approximations to the pressure 
and velocity fields within the unit cell. The methods of finite differences and finite 
elements are two means of numerical solution. Both methods require the division of 
the fluid region into three-dimensional grids. Each different concentration of interest 
would require a different grid. The finite-difference method would experience diffi- 
culties a t  the curvilinear boundaries. The finite element method would require the 
integration of trial functions over each three-dimensional element. Both methods 
result in very large (with possibly hundreds or even thousands of unknowns) banded 
systems of equations. The bandwidths depend on how the gridpoints are numbered 
and are generally larger for the finite-element method. 

A global Galerkin technique may also be used to obtain a numerical solution. I n  
this method, trial functions defined over the entire domain are used to approximate 
the solution. The difference between the exact solution and the trial solution is made 
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to average zero over the domain with respect to a number of weight functions. This 
method requires a large number of three-dimensional integrations (usually done 
numerically) and the domain of integration changes for each concentration. The 
resulting system of equations is somewhat smaller than those resulting from the 
finite-difference or finite-element methods but the matrix is full rather than banded. 
Snyder & Stewart (1966) and Sorensen & Stewart (1974) have used the Galerkin 
method to determine the velocity and pressure profiles within cubic Lttices. Because 
of the computational complexity, their results are generally limited to the concentra- 
tion corresponding to closest packing. 

The problem was solved in this study by a completely different technique. Since 
the quantity of primary interest is the relationship between the pressure drop, flow 
rate, packing characteristics, and particle concentration, we seek a method which 
gives these results in a direct way. As described below, the set of partial differential 
equations R as reduced to a set of Fredholm integral equations of the first kind. The 
unknown is the surface stress vector and the parameters include the mean flow, packing 
characteristics, and particle concentration. The integral equations were then solved 
numerically by a Galerkin method to obtain the pressure drop through the porous 
medium. 

The reduction of Stokes-flow problems to the equivalent integral equation is not 
new. It was first used as a basis of a computational technique by Youngren & Acrivos 
(1975)) who solved problems involving a single particle of arbitrary shape; it has since 
been applied to free boundary problems; see Youngren & Acrivos (1976) and Rallison 
& Acrivos (1978). In extending this approach to multi-particle systems, it is convenient 
to develop the averaged equations describing the mean quantities. It is also necessary 
to proceed with some care because as we shall see, the fundamental singular solutions 
comprising the kernel of the integral equation are now infinite Fourier sums. Although 
this fact severely limits the class of multi-particle systems for which the integral 
representation is computationally feasible, it  provides only a minor obstacle in the 
case of cubic arrays of spheres. 

In  $2,  we define the problem and reduce it to an equivalent integral equation. 
Section 3 gives the details of the solution technique and the numerical results are 
given and discussed in 5 4. 

2. Problem definition and derivation of integral equation 
Consider the steady creeping flow of a Newtonian fluid through a periodic array of 

fixed spheres of radius a centred a t  positions 

(2.1) 
The basis vectors s(i) determine a unit cell of the array. The volume of this unit cell 

(2.2) 
is given by 

Let D be the region within the spheres comprising the array. Let E be the region 
exterior to D containing fluid. Let aD denote the interface between D and E,  i.e. the 
surface of the spheres. The solution to the flow problem is governed by the usual Stokes 
equations for slow flow of a Newtonian fluid: 

r' = m, dl) + m2d2) + m, d3) (ml, m2, m3 = 0, & 1, & 2,  . . . ). 

= s(1) . (s(2) x s(3)). 

avi 
- = 0, x,EE; axi 
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~i = 0, xi E aD; 
vi is periodic, i.e. for all ra; 

v i (x+ra)  = vi(x),  X E E .  

Our objective is to solve (2.3)-(2.7) to obtain the force exerted by the fluid on the 
solids in the lattice when the superficial velocity, V, is specified. 

The fundamental singular solution of this problem is comprised of the quantities 
& ( X ,  y ) ,  U i k ( X ,  y ) ,  and y )  which represent the pressure, the ith velocity com- 
ponent, and the ij component of the stress field at  a point x due to unit forces applied 
in the k direction at  each position y + ra. These quantities satisfy 

a 7 u k  = - a i k x $ ( X - y y p ) ,  (2.10) 
axj a 

where xa indicates a summation over all particles in the lattice. In  addition we will 
require uik to have a zero mean within a unit cell. The fundamental singular solution 
is well known (Hasimoto 1959; Saffman 1973) to be 

( x k - y k )  z'-exp[2nika. kg ( x - y ) ] ,  
= ?-Go a lkaI2 

(2.11) 

(2.12) 

where 
ka = ml b(l) + m2 b(2) + m3 b(3) (ml, m2, m3 = 0, 5 1, & 2, . . . ))  (2.13) 

are vectors in the reciprocal lattice. The basis vectors bci) are given by 

(2.15) 

Also, 2; indicates a summation over all reciprocal lattice vectors ka except where 

Now restrict the points x and y to be within the region T ,  which we shall define as 
any unit cell which completely encloses the sphere centred at the origin. Let aT 
denote the surface of T .  In addition, redefine E and D as the fluid and solid regions 
within T, and aD as the surface of the isolated sphere. The superficial velocity can 
now be defined as 

lk"l = 0. 

(2.16) 
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For x and y within T, equation (2.10) becomes 
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It then follows that 

(2.17) 

(2.18) 

From equa,tions (2.3)-(2.5), (2.8)-(2.9) and (2.18), and the divergence theorem we 
obtain 

(2.19) 

where n j  is the unit outward normal. 

fluid. This force is given by 
The quantity we seek to determine is the force, F, exerted on each sphere by the 

where 

f i ( X )  = a q ( x )  q x ) .  

(2.21) 

(2.22) 

Because of the force exerted on each sphere, there will be an overall or mean pressure 
gradient of - F/70 through the army. In other words, the pressure can be decomposed 
into a periodic part end a linear part with gradient; - F/7,,, i.e. 

(2.23) 1 

70 
p ( x )  = - 4 p j  + p t ( x ) ,  

where p ' ( x )  is periodic. 
It should be observed that because v i (x )  and u i k ( x , y )  are periodic and because 

p(x) and qk(x, y) contain periodic parts, the quantity virijk - uikni j  can be decom- 
posed into a periodic part and a non-periodic part: 

Sij 
@ i ( ~ ) 7 i i k ( ~ ,  ~ ) - ~ i k ( x , ~ ) u i j ( x )  = --{v~(x) ( z ~ - Y ~ ) + u < ~ ( x , Y ) ~  

70 
+ a periodic part. (2.24) 

From equation (2.24) and the fact that 

for any periodic function g(x), equation (2.20) can be reduced to 

(2.25) 

(2.26) 
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With use of the divergence theorem, this can be reduced further to 
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(2.27) 

From the definition of V and the fact that uik has zero mean it follows that 

Finally, equations (2.11) and (2.29) give the integral equation 

x J J exp [2nika. x ] f , ( x )  dx ,  y E a~ (2.30) 
dD 

which must be solved to obtain f i ( x )  and subsequently Fi. 

3. Solution of the integral equation 
It is obvious that equation (2.30) still requires a numerical solution. At first it may 

appear to be more difficult to solve than the original differential equations. One 
reason is that integral equations of the first kind tend to yield stiff algebraic equations 
upon discretization. Furthermore, the kernel is a three-dimensional Fourier series 
which is singular a t  x = y .  The integral equation is not without its advantages, 
however. 

The domain of the integral equation is the two-dimensional surface of a sphere 
whereas the domain of the differential equations is the three-dimensional fluid region. 
This gives the integral equation a great advantage over the differential equations 
with regard to the size of the numerical problem. In addition, a change in either the 
structure of the array or the concentration of the particles requires a change in the 
size and shape of the domain over which the differential equations must be solved. 
However, such a change in the packing affects only the kernel of the integral equation 
and not the domain. The integral equation involves only three unknowns, the three 
components of the surface stress vector. The differential equations involve four un- 
knowns: the pressure and the three components of the velocity vector. This will also 
make a difference in the size of the numerical problem. Finally, it may be difficult to 
satisfy the boundary conditions exactly when the differential equations are solved. 
However, the conversion of the differential equations to the integral equation auto- 
matically satisfies all periodicity and boundary conditions. 

The straightforward approach to solving equation (2.30) would be to use a collo- 
cation method. Integral equations are usually solved by collocation methods and in 
particular, Youngren & Acrivos (1975) have successfully used such a method to 
determine the drag on a single, arbitrarily shaped particle in Stokes flow. The basic 
idea behind any collocation method is to divide the domain of integration into N 
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discrete collocation points. The integral is approximated by a sum over all the 
collocation points and the integral equation is required to hold at each collocation 
point. For a vector integral equation such as equation (2.30), this results in a 3 N  x 3N 
system of algebraic equations for the three unknowns a t  the N collocation points. 
Some difficulty is encountered because of the singularity in the kernel but as Youngren 
& Acrivos demonstrated, this difficulty can be overcome by analytic integration in 
the neighbourhood of the singularity. 

However, in the present problem, collocation becomes unattractive because the 
kernel is a Fourier series. A collocation method for a vector equation, with N collo- 
cation points, would require up to 4 ( 3 N )  (3N + 1 )  evaluations of the kernel. Youngren 
& Acrivos encountered no difficulties even with N = 144 because the kernel in their 
problem was easily evaluated. I n  the present case, this would involve the evaluation 
of 93,528 three-dimensional Fourier series, which would be totally out of the question 
from a computational viewpoint. Therefore, a different method was used to solve 
equation (2.30). This involved the development of a Galerkin method. 

Consider the equation we must solve for f(x): 
r r  

Suppose there exists a set of known basis functions, @(x) which are complete over 
the domain aD. Then f(x) can be expressed as a linear combination of these basis 
functions : 

a, 

f i (X) = 2 aig5j(x). (3.2) 
j=l 

Therefore, equation (3.1) can be rewritten 

* .  
8. = z UiJJD %(X, Y) N X )  dx, Y E  a l l .  (3.3) 

j = 1  

I n  the usual wa,y, it may be shown that 

x f$“y)dy, I = 1 , 2 , 3  ,... , (3.4) 

We now have a system of linear equations of infinite rank for the unknown coefficients 
a; : 

a, 

and 

2 A&a{ = Wk,  I = 1 , 2 , 3 ,  ..., 
j = 1  

where 

(3.5) 

If Ai1; were diagonal, equation (3.5) could be solved explicitly for every u$ and then 
equation (3.2) would provide an exact solution for f(x). Unfortunately, in this problem 
there is no known set of basis functions for which A?;k is diagonal and so there is no 
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exact solution. However, the Galerkin technique may be used to find an approximate 
solution by truncating the expression for f(x) after N terms and solving the resulting 
finite problem, i.e. 

N 

j =  1 
fi(X) = 2 a i $ W  (3.8) 

where 
iV 

i= l  
C A&u$ = W i ,  1 = 1)2) 3, ..., N (3.9) 

One possible set of basis functions for this problem is given by 

$l(X) = 1, 0th order; 

$z(x) = $3(x) = x 2 ,  $4(x) = x 3 ,  1st order; 
(3.10) $'cx) = ] 2nd order; $5(x) = x121, #"x) = x1x21 

$"x) = x2z2, $"x) = x2x3,  p(x) = x3x3,  

+l1(x) = xlxlxl, etc., 3rd order. 

These functions can be derived from spherical harmonic functions and thus they form 
a complete set over the surface of a sphere. As listed, not all of these functions are 
linearly independent (e.g. 5h5+$*+  $lo = a2$I) so some of them may be discarded. 
It can also be shown that if the array is isotropic (as are the three cubic arrays studied 
here) a considerable number of the coefficients a$ will be zero. First, none of the odd- 
ordered functions will contribute to f .  Secondly, we can take the flow to be in the 1- 
direction without loss of generality. Then it can be shown that for the function 

$j(x) = x:,x;x;, (3.11) 

a{ is non-zero only if p ,  q and t are even; a; is non-zero only if p is odd, q is odd, and t 
is even; and a{ is non-zero only if p is odd, q is even, and t is odd. We shall let the even 
integer M denote the order of the approximation if all the independent functions for 
which p + q + t = ilf are included in the approximation. It can then be shown that the 
total number of non-zero coefficients to  be determined is $ ( M  + 2) (3M + 4). One 
other consequence of the array being isotropic is that the matrix A{i takes the simpli- 
fied form 

x JJ cos (27rk". x) @(XI dx. (3.12) 
aD 

If the integrals appearing within A& were to require evaluation for each specific 
value of ka, the computation of A& would be hopelessly intractable (this would be 
similar to the downfall of the collocation method). Fortunately however, because of 
the simplicity of the basis functions and of the spherical surface, aD, the integrals can 
be evaluated analytically. It can be shown that, for any vector Z, 

P p t  

i = O ,  l j = O ,  1 k=O, 1 
cos(z.n)nfn;n$dx = 4 7 7 ~ 2  C, 2 2 
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where a is the sphere radius. 
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P 

i = O ,  1 
Here indicates a summation over the values 

0 ,2 ,4 ,  . . . ,p ,  

1 ,3 ,5 ,  ..., p, forpodd,  

for p even, 
i - 1  

and 
J y ( 2 )  = ( -  1)' (2Z)-(m-l)jnL+&), 

(3.14) 

(3.15) 

where j ,(z) is the nth spherical Bessel function of the first kind. 
All that remains is to define ro and the reciprocal lattice vectors, kb, for a particular 

array before equation (2.30) can be solved. Given below are the lattice basis vectors, 
s(i), the unit cell volume, 7,,, and the reciprocal-lattice basis vectors, b(0, for the three 
types of cubic packings with centre-to-centre distance d between nearest neighbouring 
particles. 

(a)  Simple-cubic packing (SC) : 

(3.16) 1 
1 
i 

s(1) = d( 1, 0, O ) ,  
s(2) = d(0, 1, O ) ,  
s(3) = d(O,O,  1), 

b(l) = d-l(l, 0, 0) ,  
b(2) = d-l(O, 1,0),  
b(3) = d-l(O, 0, l ) .  

To = d3, 

( b )  Body-centred cubic packing (BCC): 

(3.17) 
dl) = 3-$d(l, 1,  - l),  
d2) = 3-*d( - 1 , 1 ,  i ) ,  
d3) = 3-*d(l, - 1, l ) ,  

b(1) = $43d-'(l, 1,0),  
b(') = &2/3d-l(0,1, l), 
b(3) = $2/3d-l( 1,0,1). 

7o = (4/31/3)d3, 

(c) Face-centred cubic packing (FCC): 

(3.18) 
s(1) = 2-4d(l , l ,  O ) ,  
s(2) = 2-id(O, 1 )  l), 
s(3) = 2 4 d ( l ,  0, l ) ,  

b(1) = 2-4d-'(l, 1, - l) ,  
b(2) = 2-4d-l( - 1, 1, I), 
b(3) = 2-4d-'(l, - 1 , l ) .  

T,, = 2-3d3, 

I n  all cases, the volume concentration of the array, 

c = $71a3/70, (3.19) 

is determined by the parameter a/d .  
All the information required to obtain a numerical solution to equation (2.30) is 

now available. The only remaining matters of concern are (a )  the number of Fourier 
series which must be evaluated, (b )  the inversion of the system matrix, and (c) the 
convergence of the solution. As i t  turns out, after the integrations in equation (3.12) 
are performed, the series to be evaluated are no longer Fourier series. Instead, for an 
Mth order approximation, they take the form 

(3.20) 

where p + q + t < 2M + 2 and 0 < 1, rn,, n < M .  There is a limited number of such 
series, especially since the Bessel functions can be expressed in terms of trigonometric 
functions. For example, for M = 12, only 756 independent series evaluations are 
necessary to determine the matrix. Computationally, this did not prove to be un- 
reasonable. 
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Packing ... sc BCC FCC sc BCC FCC 
Concentration . . , 0.027 0.125 0.216 0.5236 0.6802 0.7405 

Order 
0 
2 
4 
6 
8 
10 
12 

value 
Projected 

2.004 
2.008 
2.008 

2.008 * 0.001 

4.366 
4.441 
4.447 
4.447 

4.447 
& 0.001 

7.095 
7.702 
7.757 
7.758 

7.758 * 0*001 

9.53 
28.04 
40.91 
41.82 
42.03 
42-07 
42.10 

42.14 * 0.05 

9-6 
86.1 

131.8 
157.6 
161.8 
162-3 
162.6 

162.9 
& 0.3 

TABLE 1. Convergence of results for various concentrations and packings. 

8.4 
135.8 
214.4 
370.8 
418.1 
425-4 
429.8 

435 
+ 5  

Integral equations of the first kind are often difficult to  solve numerically because 
they tend to yield stiff system matrices. I n  this case, however, no problems of this 
sort were encountered. It was possible to  vary the accuracy of the matrix elements 
slightly without significantly affecting the solution. Convergence of the solution was 
found to be quite rapid. Table 1 shows some typical results for the drag coefficient 
(defined by equation (4.1) below) computed a t  various orders of approximation. For 
dilute arrays, where the results reproduce those of Hasimoto, no approximations 
higher than 6th order were needed. For the close-packed arrays, 12th order approxi- 
mations were sufficient to allow extrapolation of the results, with estimated errors of 
less than 2 yo. Tabulations of the coefficients a{ are available from the authors upon 
request, 

4. Results and discussion 
The results of the numerical computations are summarized and compared with 

other theoretical and experimental results in table 2. They are reported in terms of a 
drag coefficient, K,  which is defined by the following equation for the drag on each 
sphere in the array: 

4 = 6zpa KV,. (4.1) 

In  addition, the pressure gradient in the array is related to K and the concentration, 
c, by 

_ -  A' - --- "cKV. 
L 2 a2 

It can easily be shown that the following expression gives Kin  terms of the numerically 
determined coefficients, af : 

This drag coefficient, K,  is a function only of the geometry and concentration of the 
periodic array. When the array is infinitely dilute, K = 1 and the drag is simply the 
Stokes drag on a single sphere. 

The comparison of our results with previous theoretical work deserves some dis- 
cussion. It is important to point out that in contrast to  other analytical or numerical 
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Concentration 

0.000125 
0.001 
0.008 
0.027 
0.064 
0- 125 
0.216 
0.343 
0.45 
0.5236 
- 
- 
- 

0.6 
0.6802 

0.72 
0.7405 

- 

- 
- 

SC packing 
& 

Previous 
K results 

1.096 l.096t 

1.525 1.525t 
2-008 2.009t 
2-810 2.83t 

1.212 1.212t 

4.292 4.51 
7.442 12t 

- 15.4 
28.1 
42.1 42*6$ 
- 40.4 8 
- 42.511 
- 48.4tt 

- 

- - 
- - 
- - 
- - 
- - 
- - 
- - 

BCC packing 
& 

Previous 
K results 

1.098 1-098t 
1-217 1.217t 
1.539 1.5391- 
2.044 2.044t 
2.889 2-889t 

7.739 8.0t 
4.447 4-47? 

16.3 2ot 
- 31.7 

51.7 48.4tt 
- - 
- - 
- - 

88.9 93.8tt 
163 1707 

2 w t  - 
- - 
- - 
- - 
- - 

FCC packing 
-7 

Previous 
K results 

1.098 1.098t 
1.217 1.21‘lt 
1.539 1.5391- 
2.044 2.044t 
2.889 2.889t 
4.446 4-47? 
7.758 7.9t 

16.6 19t 
33.5 
57.4 48.4tt 

- 

- - 
- - 
- - 

108 93.8tt 
229 2081- t 

349 328t t 
435 4128 

39811 
424tt 

- - 

- 
- 

t Hasimoto, (1959). Sorensen & Stewart (1974). 8 Snyder & Stewart (1966). 
11 Martin et al. (1951). 7 Sunskind & Becker (1967). tt Equation (4.4). 

TABLE 2. Drag coefficients for various concentrations and packings. 

techniques the integral equation formulation conveniently provides a solution to this 
problem over the entire range of concentrations. Hasimoto’s asymptotic expansion 
for small concentration is valid for dilute arrays but it fails for concentrated packings. 
On the other hand, standard numerical techniques of solving differential equations 
will not work well on dilute packings and thus these methods have only been applied 
to a few select densely packed arrays. Table 2 shows that our results compare very 
well with Hasirnoto’s resultsfor concentrations up to about 0.2, above which Hasimoto’s 
results begin to diverge. To our knowledge, this is the first time Hasirnoto’s results have 
been corroborated by an independent numerical technique. There have been relatively 
few numerical studies of this problem, and these have been for close packings. For 
simple cubic packing, Snyder & Stewart (1966) used a Galerkin method to obtain a 
drag coefficient of 40.4 f 0.6. Sorensen & Stewart (1974) later improved on that 
Galerkin solution and obtained 42.6 k 0.2. This last result agrees very well with our 
value of 42.1 & 0.1. Snyder & Stewart also obtained a coefficient of 412 for a dense 
face-centred cubic packing. This is within 6 % of our value of 435. 

There have also been some experimental studies of the pressure drop through periodic 
porous media. Drag coefficients of 42.5 and 398 were obtained from the data of Martin, 
McCabe & Monrad (1951) for simple cubic and face-centred cubic packings, respec- 
tively. The experiments of Susskind & Becker (1967) with body-centred cubic packings 
yielded a coefficient of 170. These values agree to within a few per cent with our results 
of 42.1, 435, and 163, respectively. 
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100 
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FIGURE 1 .  Drag coefficient as a function of concentration. The curves for various packings end 
at the concentration corresponding to closest packing. - - -, bimple cubic; . . ., body-centred 
cubic; -.-.-, face-centred cubic; ---, equation (4.4). 

C+(l  - c )  

Our results may also be compared over a range of concentrations with the Carman 
empirical correlation which predicts that for random packings, 

Figure 1 shows that for concentrations greater than 0.5, this correlation falls within 
15 % of our results for a t  least one of the three types of packings. This suggests that 
certain features of the flow through randomly packed beds may be modelled by periodic 
arrays of spheres. However, the choice of the packing geometry in such a model may 
require careful consideration since, as figure 1 also shows, a t  high concentrations, the 
geometry of the packing has a significant effect on the pressure drop. 

I n  addition to the drag coefficient, we may examine the details of the surface stress 
variations for each of the packings considered. We restrict this discussion to solutions 
for closest packings, although results for other concentrations are available. From our 
Galerkin expansion, equation (3.8)) and our numerically determined a:, we may 
evaluate the three components of the surface stress vector. The component o f f  in 
the direction of flow, fi, is shown in figures 2-4 for simple cubic, body-centred cubic 
and face-centred cubic packings respectively. (The drag is simply the mean of these 
functions.) I n  these figures, the co-ordinate system is chosen such that 0 = 0 corres- 
ponds to the forward stagnation point, the mean flow being in the x1 direction, and 
4 = 0 corresponds to  the negative x2 axis. $, 0 are the usual azimuthal and polar angles. 



24 

7 

A .  A .  Zick and G .  M .  Homsy 

' 180' 

580 

e 

O0 

0" 

180" 

35" 

FIGURE 2. The surface stress component fi for simple cubic packing. 
In this and subsequent figures, contact points are marked by the dots. 

0" 

FIGURE 3. The surface stress component fi for body-centred cubic packing. 

It is of interest to locate the points of contact on these figures (recall these results 
are for closest packing). In figure 2,  for simple cubic packing, these are a t  0 = 0", 180", 
and in the 'valleys' at  0 = go", q5 = 0", go", 180" (the latter two not visible). Asmight 
be expected, the normal stress contribution is large at  the forward and rear stagnation 
points, and vanishes a t  0 = 90". The shearing stress is minimal a t  points of contact, 
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s 0 

45 

FIGURE 4. The surface stress component fl for face-centred cubic packing. 

180" 

0" 
FIGURE 5 .  The surface stress component fi for face-centred cubic packing. 

and large in the regions between contact points, a manifestation of the flow being 
constrained to channel through the open spaces in the lattice. 

Figure 3 shows the stress component fi for the case of body-centred cubic packing. 
The same general features are evident. However, because there are now eight contact 
points, the tangential stress along the equator (6 = 90") is more evenly distributed 
and larger than in the case of the simple cubic packing. The stress vector a t  the stag- 
nation points is also larger, but this may be a misleading comparison as the void 
fraction (and hence the mean force) a t  closest packing is different for the three cases 
being discussed. What is clear however, is that the distribution of fluid flow in the 
lattice is more uniform the more complex the packing. 
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This is evident in figure 4, which gives fi for the face-centred cubic case, which has 
twelve points of contact a t  closest packing. The azimuthal variation is the weakest 
of the three cases and the stress a t  the equator the highest. It is also of interest to 
note that the results for this packing are closest to experimental results for random 
packings. 

In  figure 5 we show the stress component fi for the face-centred cubic packing, which 
of course has zero surface mean, but serves to demonstrate the complexity of the flow 
through the interstitial space. 
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